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a b s t r a c t 

The popular SPH method still remains as one of the most widely-used methods in fluid simulation, exhibiting its 

longevity with new and diverse variants in recent decades. New progress in the SPH simulation in most recent 

years are still hampered by such challenge when simulating high-speed fluids. In this paper, our research efforts 

are devoted to the efficiency issue of the SPH simulation when the ratio of velocities among fluid particles is large. 

Specifically, we introduce a k -means clustering method into the SPH framework to dynamically partition fluid par- 

ticles into two disjoint groups based on their velocities. Then, we use a two-scale time-step scheme for these two 

types of particles. The smaller time steps are for particles with higher speed in order to preserve temporal details 

and guarantee stability. In contrast, the larger time steps are used for particles with smaller speed to reduce the 

computational expense, and both types of particles are tightly coupled in the simulation. We conduct various ex- 

periments and compare our method with some of the most relevant works, which have manifested the advantages 

of our methods over the conventional SPH technique and its new variants in terms of efficiency and stability. 
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. Introduction and motivation 

Over the past several decades, the smoothed particle hydrodynamics
SPH) method has proved to have a strong ability of to simulate a wide
ariety of fantastic fluid phenomena. In SPH methods, fluids are essen-
ially discretized as a number of particles, which carry some physical
roperties such as mass, velocity, and position augmented and blended
y certain kernel functions, so SPH methods could naturally guaran-
ee the conservation of mass. Augmented by the implicit tracking of
requent topology changes without having an explicit grid structure or
eshes, SPH methods have demonstrated an advantage over other fluid

imulation methods. The standard SPH method [24] is suitable for the
imulation of compressible, but will meet a challenge when simulating
ncompressible fluids. In recent years, many variants of SPH methods
ave been developed to enable the ability for simulating some fantastic
henomena. WCSPH [3] introduces the Tait equation to SPH and en-
orces weakly compressibility on fluids, but it is realized at the cost of
imiting time step size, thus becomes inefficiency on overall simulation.
CISPH [32] proposes a prediction-correction scheme to resolve pres-
ure forces and enforces incompressibility and significantly improves
he performance. IISPH [17] obtains a discretized form of the pressure
oisson equation and improves the convergence rate of the pressure
olver, thus allows a larger time step and small density deviations. DF-
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PH [4] proposes two implicit pressure solvers to enforce a low-density
ompression and a divergence-free velocity field. Those implicit solvers
ave greatly improved the efficiency of SPH simulations, but pressure
olving remains one of the most time-consuming parts during the simu-
ation. 

For highly turbulent fluid simulations, especially those containing
articles with large velocity differences, the huge velocity differences
ould easily give rise to unstable simulation or result in some artifacts.
onsidering an example of a high-pressure water gun spraying water

nto the pool. Furthermore, the high-speed fluids usually generate lots
f splashes and sprays, having much more details than the rest of near-
ormal fluids in reality. For most existing SPH models, high-speed fluid
nimation may behave abnormally due to the numerical instability, or
iss the interesting details generated by severe collision. Using smaller

ime steps may relieve the instability issues and keep the splash details,
hich is at the expense of time efficiency. It may be noted, the inef-
ciency will become especially obvious as the number of particles in-
reases. To tackle these issues, we aim to propose a robust and efficient
odel for stable high-speed fluids simulation with sufficient and vivid
etails. 

Most of the current methods are either using a unified constant time,
r adopting an adaptive one which is directly derived from the CFL con-
ition by using the maximum velocity of all particles. They all apply
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Fig. 1. City blocks with flooding. 
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he constant time step to all the particles at the same moment. To ad-
ress the efficiency issues in turbulent fluid simulation, we propose a
ynamic particle partitioning SPH method (PPSPH) that improves the
imulation’s efficiency through changing the time step size for different
uid particles. We divide each simulation time step into certain numbers
f small sub-steps for particles with high velocities, and in each sub-step,
e simplify the computational procedure when computing the particles

hat have low velocities, and then promise a correct final result at the
nd of each major step. Specifically, the salient contributions of this pa-
er include: 

• We introduce a k -means clustering scheme into SPH particles par-
tition based on their velocities as a pre-treatment measure for our
dynamic time step model. 

• We propose a dynamic two-scale time step model for particles
with a large difference in velocities. A small-time step for fast
particles ensures stability and sufficient details, while large time
step for slow ones improves the efficiency. 

• Our method is easy to be performed on most of the existing SPH
frameworks and can be implemented on GPU for high-efficiency
applications. 

In practice, our method could function well within any popular SPH
ramework, and in this paper, we integrate our method with PCISPH
32] and DFSPH [4] for the comparison purpose, and our visually-
etailed fluid simulations are based on DFSPH. 

. Related works 

In recent years, a lot of visual-effect-dominant fluid simulation meth-
ds have been introduced for visually-appealing animation. For exam-
le, fluid implicit particle (FLIP) method [44] is a popular particle-
rid coupling method to simulate multiphase fluid [5,10] , splashing
ater [11,43] , fluid-solid coupling [9] , etc. Lattice Boltzmann method

LBM) [13,38] uses Eulerian grid solving fluid animation in a physically-
ased way. Also, data-driven methods [19,29] and position based fluid
20,21] all achieve good achievements. However, among the fluid sim-
lation methods, SPH may be the most widely used and most studied
ethod. 

The fluid simulation method of Müller et al. [25] was based on the
quation of state to weakly enforce incompressibility. It was well suited
or some low-speed compressible fluid simulations. For example, Adams
t al [1] . computed pressure in an efficient and straightforward way.
ater, WCSPH [3] was proposed to enforce a weakly compressible form
f SPH for fluid flow based on the Tait equation. For low-speed fluid sim-
lation, viscosity is one of the important attributes of fluids, and high
iscosity fluids like honey and mud have different characteristics from
ater. XSPH was introduced in [23,24] and adopted in [31] to simulate
uids with low viscosity. Also, there are some other approximate meth-
ds [33] computing a viscosity force from relative velocities to smooth
he velocity field. He et al. [15] proposed a local Poisson SPH Method
o solve viscous incompressible fluids and preserve the advantages of

CSPH and ISPH. For non-Newtonian fluids, viscosity can be modeled
y the deformation tensor [26] . Takahashi et al. [34] used an implicit
ormulation of viscosity adapted from Eulerian formulation [2] to im-
rove the robustness and efficiency of viscosity integration. Peer et al.
27,28] proposed a method based on prescribing a target gradient and
econstructing the velocity field to simulate high viscosity fluids. And
hen Weiler et al. [39] provided several quantitative and qualitative
omparisons of the SPH-based implicit viscosity methods and presented
 novel method for the simulation of highly viscous fluids which sur-
asses the existing approaches in physical accuracy and visual realism. 

Unlike viscous SPH fluids, turbulent fluid simulation always focuses
n pressure solving. Implicit pressure solvers were introduced by So-
enthaler et al. in PCISPH [32] , which computed the pressure field by
olving a linear system to approximate the rest density and thus enforced
 low-density variation. Then Macklin et al. [20] also used an iterative
orrection method to correct particle positions to enforce incompress-
bility. Projection schemes can also be implemented in SPH, and pres-
ure Poisson equation is solved to compute pressure, though it is usually
sed in some Euler approaches [6,8] . Ihmsen et al. proposed IISPH [17] ,
 formulation of the projection method for SPH allowing a larger time
tep and exhibiting a superior convergence rate than PCISPH, which
ould relatively simulate high-speed fluid animation. And Bender et al.
4] employed two solvers to enforce a constant density condition and
 divergence-free, and improved the stability and performance while
imulating turbulent fluids. Ihmsen et al. [18] summarized the state-of-
he-art researches within the graphics community. Some asynchronous
ethods [16,30,35] have been proposed to boost the efficiency of SPH

imulations, of which Reinhardt et al. [30] proposed an approach of ded-
cated time steps for each particle and introduced parallelization queues
or asynchronous time integration. It could accelerate up to a factor of
.5 compared with non-iterative EOS solvers with the fixed time step-
ing method. However, this solver is impossible to use iterative SPH
odels because of the lack of global convergence criteria, while our
ovel method can be conveniently applied to the foremost methods such
s PCISPH, IISPH, and so on to improve the efficiency and performance
reatly. 

At the same time, machine learning has recently received widespread
ttention in the field of fluid simulation. The combination of fluid so-
utions and machine learning techniques was first proposed by [19] .
hu et al. [7] and Xie et al. [40] used a convolutional neural network
o generate super-resolution results from low-resolution simulation sce-
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arios. Um et al. [37] proposed a deep neural network to add a large
umber of splashed droplet details to a low-resolution simulation scene.
oreover, Yang et al. [41] and Tompson et al. [36] accelerated the solv-

ng of the Poisson equation by training a neural network as the pressure
olver. Eckert et al. [22] proposed large-scale data set of reconstructions
f smoke plumes, which enabled the reconstructed velocities for further
pplications such as re-simulation, flow enhancement, etc. 

. Method overview 

In this paper, we propose a particle partition SPH method (PPSPH) to
imulate particles with different speeds by dynamic time steps. Compare
o the traditional SPH framework, our simulation step consists of three
ain components: (1) Partitioning particles into two disjoint groups by
 -means clustering; (2) Uncoupling high-speed particles from fluids and
imulating faster particles with refined time-step size; And (3) Integrat-
ng all fluid particles including faster ones and slower ones. 

.1. SPH fundamentals 

In the concept of SPH, the quantity A i at location x i is interpolated
y a weighted sum of A j from neighboring particles 

 𝑖 = 

∑
𝑗 

𝐴 𝑗 

𝑚 𝑗 

𝜌𝑗 
𝑊 ( 𝐱 𝑖 − 𝐱 𝑗 , ℎ ) , 

here m j and 𝜌j are the mass and density of particle j separately, W is
he smoothing kernel function with support of radius h . The density 𝜌i 

s approximated as 

𝑖 = 

∑
𝑗 

𝜌𝑗 

𝑚 𝑗 

𝜌𝑗 
𝑊 ( 𝐱 𝑖 − 𝐱 𝑗 , ℎ ) = 

∑
𝑗 

𝑚 𝑗 𝑊 ( 𝐱 𝑖 − 𝐱 𝑗 , ℎ ) . 

he derivative of quantity A i only affects the smoothing kernel 

 𝐴 𝑖 = 

∑
𝑗 

𝐴 𝑗 

𝑚 𝑗 

𝜌𝑗 
∇ 𝑊 ( 𝐱 𝑖 − 𝐱 𝑗 , ℎ ) , 

nd the pressure field is derived from ideal gas state equation 

 𝑖 = 𝜅( 𝜌𝑖 − 𝜌0 ) , 

here 𝜌0 is the rest density of fluids. In incompressible fluid simula-
ions, the improved models such as PCISPH, IISPH, or DFSPH usually
se implicit pressure solvers to guarantee density deviation at a low
evel, which can also improve the efficiency of the simulation. 

.2. Algorithmic outline 

Distinct from the existing SPH methods using the unified (constant
r adaptive) time step for all particles, we focus on the refined process-
ng of particles at different speeds. According to the CFL condition, the
aximum simulation time step is limited to the inverse of the maxi-
um velocity of all particles, so the time step should be much smaller

f the scenarios consist of high-speed particles. It will inevitably lead
o inefficiency when particles have large differences in velocities and
ave an unbalanced ratio on the number of different types of particles
t the same time. To cope with the efficiency issue and keep vivid de-
ails of high-speed fluids, we propose a new simulation scheme for SPH
ethods, which uncouples high-speed particles from the whole fluids

y k -means clustering. High-speed particles have a faster motion than
he rest of fluid particles, thus the time step derived from the CFL con-
ition is adapted to ensure the stability. To reduce computation we use
ifferent time-step sizes and give high-speed particles more chances for
etail capture, and then integrate all particles after processing certain
imes of simulation steps. 

After partitioning high-speed particles dynamically, we divide a
omplete simulation time step into various major steps, and each major
tep consists of a certain amount of mini-steps. In the first few mini-
teps of the major step, we only calculate high-speed particles and use
he maximum velocity of all particles to derive time-step size from the
FL condition to ensure numerical stability. Low-speed particles will
est until we arrive at the last mini step. We integrate the high-speed
articles with low-speed particles to simulate the motion for all parti-
les in the scene. In the integration step, we make up the time step for
ow-speed particles to cope with the lack of motion of those low-speed
articles in previous mini steps. Algorithm 1 outlines the main scheme
f our method, where N mini is the number of mini steps in a major step
nd iter is the current mini-steps, 𝜆 is a user-defined value to determine
hether k -means clustering procedure should be proceeded, and 𝑣 ∗ max 

s the maximum velocity of all particles. Fig. 2 also illustrates the main
rocedure of our method. 

lgorithm 1 Simulation procedure. 

1: set the amount of mini steps in major step 𝑁 𝑚𝑖𝑛𝑖 = 0 
2: set the index of mini step in major step 𝑖𝑡𝑒𝑟 = 0 
3: while simulation do 

4: for all particle 𝑖 do 

5: find neighborhoods 
6: end for 

7: for all particle 𝑖 do 

8: compute densities 𝜌𝑖 
9: compute non-pressure forces 𝐅 𝑒𝑥𝑡 

𝑖 

10: predict velocities 𝐯 ∗ 
𝑖 

11: end for 

12: if 𝑖𝑡𝑒𝑟 ≥ 𝑁 𝑚𝑖𝑛𝑖 then 

13: if 𝑣 ∗ max < 𝜆 then 

14: derive time step size Δ𝑡 from CFL condition 
15: update 𝑁 𝑚𝑖𝑛𝑖 = 1 
16: else 

17: partition particles based on 𝐯 ∗ 
𝑖 

18: compute mini and major time step sizes 
19: update 𝑁 𝑚𝑖𝑛𝑖 

20: end if 

21: else 

22: if 𝑖𝑡𝑒𝑟 < 𝑁 𝑚𝑖𝑛𝑖 − 1 then 

23: solve pressure for high-speed particles 
24: update velocity and position for high-speed particles 
25: else 

26: solve pressure for all particles 
27: update velocities and position for all particles 
28: end if 

29: end if 

30: end while 

. Particle classification 

We implement different strategies on fluid particles belong to differ-
nt groups to improve the efficiency of the simulation. In this section
e will introduce our particle partitioning procedure. In our method,
ll fluid particles will be partitioned into two different clusters based on
heir velocities. To fulfill the requirement, we introduce the k -means
lustering algorithm [14] to our method as the particle partitioning
ethod. Applying a threshold manually might not be a suitable way

ompared with our automatic k -means classification. A fixed threshold
an not adjust automatically with the velocities change in a scenario,
hich might cause unreasonable classification. What is more, a fixed

hreshold may not be appropriate in every scenario, for different sim-
lations it may need to be reset manually for different ranges of ve-
ocities. Therefore, our work addresses these points by introducing the
 -means clustering algorithm into our particle partitioning procedure.
n our method, all fluid particles will be partitioned into two different
lusters dynamically based on their velocities in every major time step.
egardless of the difference in velocity distribution for different sce-
arios, our method always finds the proper classification automatically,
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Fig. 2. A brief illustration of our method. 
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hich is quite suitable to be implemented for its fast convergence and
asy deployment. 

.1. k -means clustering 

k -means clustering is quite suitable to be implemented in our method
or its quick convergence and easy deployment. As a popular method in
ata mining for data cluster analysis, and its function is partitioning
 points into k clusters. The goal of the algorithm is to minimize the
ollowing within-cluster sum of squares 

rg min 
𝑘 ∑
𝑖 =1 

∑
𝐱 𝑗 ∈𝑆 𝑖 

( 𝐱 𝑗 − ̄𝐱 𝑆 𝑖 ) , 

here S i is the i th cluster containing points which are closer to the center
alue of the i th cluster than any other clusters and 𝐱̄ 𝑆 𝑖 is the mean value
f all points in the i th cluster calculated in the previous iteration. For
he first iteration in k -means clustering, it can be a randomly generated
alue or a user-defined value. 

.2. Data clustering 

We use particle velocities as sample observations to partition parti-
les into two different clusters. After processing the clustering, we use
he maximum value of each cluster to derive the time-step size from the
FL condition, and compute the ratio between the major and mini-steps
ize to determine the number of mini-steps ( N mini ), and combine these
ini steps to be a major step. According to the CFL condition, we need

o compute scalar lengths of particle velocity vectors as sample obser-
ations in k -means clustering. 

As the observation of k -means clustering, the predicted velocity is
erived from the final velocity in the previous iteration and the non-
ressure forces 

 

∗ 
𝑖 
= 𝐯 𝑖 + Δ𝑡 

𝐅 𝑒𝑥𝑡 
𝑖 

𝑚 𝑖 

. (1)

he k -means clustering usually converges to a local optimal value, and
he result is prone to fluctuation (be affected by the initial mean value
f each cluster). In order to have a more clear dividing line for the par-
icles, our method usually sets the maximum predicted velocity to the
nitial mean value of one cluster, and sets the threshold value to an-
ther cluster (i.e., symbol 𝜆 in Algorithm 1 ). The threshold value is a
ser-defined value used to determine whether the k -means clustering
rocedure will be proceeded. we set a threshold pretreatment because
t the beginning of the simulation or in some other special scenes, all
he particles velocities are at a low level. The time-step size derived
rom the CFL condition is large enough and there won’t be a significant
mprovement on the efficiency by using our clustering method, thus the
lustering procedure will not be proceeded in such circumstance (which
eans our PPSPH method can recognize fluid scenes and only works on
igh-speed fluid scenes). In the end of the clustering, particles will be
artitioned into two clusters, one containing particles with slower ve-
ocities, another with faster velocities. 

Please note, the clustering and the time-step updating procedures are
nly performed in the first mini step of every major time step. Newly
enerated particles, if any, will be simply partitioned into the high-speed
article cluster if their velocity is larger than the maximum velocity of
he low-speed cluster and vice versa. 

A complete clustering procedure is illustrated as Algorithm 2 . 

lgorithm 2 Implementation of k -means clustering for particle parti-
ion based on particle velocities. 

1: for all particle 𝑖 do 

2: predict particle velocity 𝑣 ∗ 
𝑖 
= 

‖‖‖𝐯 𝑖 + Δ𝑡 𝐅 𝑒𝑥𝑡 
𝑖 

∕ 𝑚 𝑖 
‖‖‖2 

3: end for 

4: calculate maximum velocity of all particles 𝑣 max 
5: if 𝑣 max > 𝜆 then 

6: initialize mean value of two clusters: 𝑥̄ 0 = 𝑣 𝑡ℎ𝑟𝑒𝑠 , 𝑥̄ 1 = 𝑣 max 
7: compute distance and update cluster index for all particles 
8: while clustering not converged do 

9: compute mean value of velocity for each cluster 
10: update 𝑥̄ 0 , 𝑥̄ 1 
11: update cluster index for all particles 
12: compute differences on cluster mean values with previous

values 
13: end while 

14: calculate the maximum velocity for each cluster 
15: store particle clustering results 
16: else 

17: store the maximum predicted velocity of all particles 
18: end if 

. Simulation 

Section 4 discusses the implementation of k -means clustering in our
ethod to partition particles into two groups based on particle veloci-

ies. In our method, a major step consists of N mini times of mini steps.
t the beginning of each major step, a particle partitioning procedure
ill be processed and the clustering result will be stored. We store the
aximum velocity of each cluster. The cluster labels particles which it

urrently contains, and the particle index set of the high-speed cluster
s also stored. 
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.1. Major step 

In each mini step of the major step except the last one, we only solve
ressure and update velocities and positions for particles with a higher
elocity. That is, in this period, slow particles don’t participate in the
alculations and are waiting for the high-speed particles. But in the last
ini step, we will implement a complete simulation procedure for all
articles in the scene like the standard SPH methods, but with some
odifications. 

So when simulating incompressible fluids with our method, we only
uarantee the incompressibility for high-speed particles at the end of a
ini time step. And we guarantee that the incompressible condition is

ompletely fulfilled for all particles at the end of every major time step,
s we process pressure solving for all fluid particles in the last mini step.

A major step consists of N mini mini-steps, but the major time-step
ize is not a simple multiple of mini time-step size in most cases during
he simulation since all the time steps are dynamically adaptive. Parti-
les with high velocity will be processed in each mini time step, and we
hould guarantee that each particle has a normal motion to avoid arti-
acts like penetration in mini-steps, so we choose the maximum velocity
f all fluid particles to derive the mini time step, and the maximum ve-
ocity of particles in the low-speed group to derive the major time step
rom the CFL condition. According to the CFL condition 

𝑡 ≤ 0 . 4 𝑑 ‖‖𝐯 𝑚𝑎𝑥 ‖‖2 , (2)

here d is the diameter of the particle, applying the maximum velocity
f all particles v max,all and the maximum velocity of particles in low-
peed group v max, low to Eq. (2) . We obtain the major and the mini time
tep size 

𝑡 𝑚𝑖𝑛𝑖 ≤ 0 . 4 𝑑 ‖‖𝐯 𝑚𝑎𝑥,𝑎𝑙𝑙 ‖‖2 , (3)

𝑡 𝑚𝑎𝑗𝑜𝑟 ≤ 0 . 4 𝑑 ‖‖𝐯 𝑚𝑎𝑥,𝑙𝑜𝑤 ‖‖2 . (4)

lso, we set a user-defined threshold ( N tres ). When the ratio is smaller
han the threshold, or more intuitively speaking, the particle velocities
re close to each other and don’t have a large difference, the major step
ill only contain one standard SPH time step. To prevent the ratio from
eing too large which may cause an unreal simulation result, we set a
aximum mini time step amount 𝑁 max . The amount of mini step in a
ajor step is computed as 

 𝑚𝑖𝑛𝑖 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
min ( 𝑁 𝑚𝑎𝑥 , 

⌈ 
Δ𝑡 𝑚𝑎𝑗𝑜𝑟 
Δ𝑡 𝑚𝑖𝑛𝑖 

⌉ 
) if 

Δ𝑡 𝑚𝑎𝑗𝑜𝑟 
Δ𝑡 𝑚𝑖𝑛𝑖 

≥ 𝑁 𝑡𝑟𝑒𝑠 

1 else 
, (5)

here we set the threshold N tres in Eq. (5) to a number less than 1.5.
fter determining the amount of mini steps N mini , different strategies
ill apply on the following mini steps. 

.2. Mini step 

We have mentioned in the previous section that the mini step is a part
f the major step.In our method, during the first 𝑁 𝑚𝑖𝑛𝑖 − 1 mini steps,
nly particles partitioned into the high-speed group will process pres-
ure solving and update their velocities and positions, because we have
oticed that the pressure solving procedure is the most time-consuming
rocedure during the whole simulation step. The velocities and posi-
ions of slow particles are not computed during the first 𝑁 𝑚𝑖𝑛𝑖 − 1 mini
teps of major steps. In the last mini step of a major step, all particles in
he scene will process pressure solving and update their positions. That
s to say, slow particles will wait for fast particles and couple with fast
articles until N mini th mini step 

Our method can be conveniently integrated with the existing SPH
rameworks. For PCISPH, the procedure of the first 𝑁 − 1 mini-steps
𝑚𝑖𝑛𝑖 
s summarized as Algorithm 3 shows. 𝜌err is the average error of den-
ity controlled by parameter 𝜂. Procedure before the pressure solving is
he same as the standard PCISPH algorithm. We perform neighborhood
earch, and compute densities for all particles in the scene, but we don’t
ecompute the time step in every mini step. 

lgorithm 3 Mini step for high-speed particles in PCISPH. 

1: while ( 𝜌∗ 
𝑒𝑟𝑟 

> 𝜂) || ( 𝑖𝑡𝑒𝑟< minIterations) do 

2: for all particle 𝑖 in high-speed particle cluster do 

3: predict velocity 𝐯 ∗ 𝐢 
4: predict position 𝐱 ∗ 𝐢 
5: end for 

6: for all particle 𝑖 in high-speed particle cluster do 

7: predict density 𝜌∗ 
𝑖 

and density error 𝜌∗ 
𝑒𝑟𝑟 

8: update pressure 𝑝 𝑖 and pressure force 𝐅 𝑝 
𝑖 

9: end for 

10: end while 

11: for all particle 𝑖 in high-speed particle cluster do 

12: compute new velocity 𝐯 ′
𝑖 

13: compute new position 𝐱 ′
𝑖 

14: end for 

Similarly, we also implement our method on DFSPH framework, and
ummarize the procedure of the first 𝑁 𝑚𝑖𝑛𝑖 − 1 mini steps in Algorithm 4 ,
here 𝜂div is a threshold controlling the average density change rate.
ifferent from PCISPH, the standard DFSPH framework adapts time-

tep size after processing the divergence-free solving procedure. In our
ethod, we do it before the divergence solving, thus we can also apply

ur scheme on divergence solving procedure to further improve effi-
iency. 

lgorithm 4 Mini step for high-speed particles in DFSPH. 

1: for all particles 𝑖 do 

2: find neighborhoods 
3: end for 

4: for all particles 𝑖 do 

5: compute density 𝜌𝑖 
6: compute factor 𝛼𝑖 
7: end for 

8: while 

( (
𝐷𝜌

𝐷𝑡 

)
𝑎𝑣𝑔 

> 𝜂𝑑𝑖𝑣 
) ||( 𝑖𝑡𝑒𝑟 < 1) do 

9: for all particle 𝑖 in high-speed particle cluster do 

10: compute 
𝐷𝜌𝑖 

𝐷𝑡 

11: end for 

12: for all particle 𝑖 in high-speed particle cluster do 

13: adapt velocity 𝐯 𝐢 ∗ 
14: end for 

15: end while 

16: for all particle 𝑖 in high-speed particle cluster do 

17: compute non-pressure force 𝐅 𝑒𝑥𝑡 
𝑖 

18: end for 

19: while 
(
𝜌𝑎𝑣𝑔 − 𝜌0 > 𝜂𝜌

)||( 𝑖𝑡𝑒𝑟 < 2) do 

20: for all particle 𝑖 in high-speed particle cluster do 

21: compute density 𝜌∗ 
𝑖 

22: end for 

23: for all particle 𝑖 in high-speed particle cluster do 

24: adapt velocity 𝐯 𝐢 
25: end for 

26: end while 

27: for all particle 𝑖 in high-speed particle cluster do 

28: update position 𝐱 ′
𝑖 

29: end for 

Since our method can be easily integrated into the state-of-the-art
PH simulation pipelines, we take DFSPH as an example. During the
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Fig. 3. Particle partition. From top to bottom: High-speed fluids interact with a 

fluid block. Particles partitioned into the low-speed group is colored in yellow, 

and the ones partitioned into the high-speed group is colored in pink. (For inter- 

pretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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rst 𝑁 𝑚𝑖𝑛𝑖 − 1 mini steps of every major step, the current divergence
rror in fast particle i f is determined using the DFSPH formulation, 

𝐷𝜌𝑖 𝑓 

𝐷𝑡 
= − 𝜌𝑖 𝑓 

∇ ⋅ 𝐯 ∗ 
𝑖 𝑓 
, (6)

here D ( · )/ Dt denotes the material derivative, 𝜌𝑖 𝑓 and 𝐯 ∗ 
𝑖 𝑓 

denote den-

ity and intermediate velocity of fast particle i f respectively. 
According to DFSPH, the intermediate velocity of fast particle 𝑣 ∗ 

𝑖 𝑓 
( 𝑡 +

𝑡 𝑚𝑖𝑛𝑖 ) and density 𝜌∗ 
𝑖 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) at time 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 are computed using

qs. (7) –(9) . 

 

∗ 
𝑖 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) = 𝐯 ∗ 

𝑖 𝑓 
( 𝑡 ) 

− Δ𝑡 𝑚𝑖𝑛𝑖 

( ∑
𝑗 

𝑚 𝑗 

(𝑘 𝐯 𝑖 𝑓 ( 𝑡 ) 
𝜌𝑖 𝑓 

( 𝑡 ) 
+ 

𝑘 𝐯 
𝑗 𝑓 
( 𝑡 ) 

𝜌𝑗 𝑓 
( 𝑡 ) 

+ 

𝑘 𝐯 
𝑗 𝑠 
( 𝑡 ) 

𝜌𝑗 𝑠 
( 𝑡 ) 

)
∇( 𝑊 𝑖 𝑓 𝑗 𝑓 

+ 𝑊 𝑖 𝑓 𝑗 𝑠 
) 

) 

, (7)

 

𝐯 
𝑖 𝑓 
( 𝑡 ) = 

1 
Δ𝑡 𝑚𝑖𝑛𝑖 

𝐷𝜌𝑖 𝑓 
( 𝑡 ) 

𝐷𝑡 
𝛼𝑖 𝑓 

( 𝑡 ) , (8)

∗ 
𝑖 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) = 𝜌𝑖 𝑓 

( 𝑡 ) + Δ𝑡 𝑚𝑖𝑛𝑖 
∑
𝑗 

𝑚 𝑗 

 𝐯 ∗ 
𝑖 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) − 𝐯 ∗ 

𝑗 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) − 𝐯 ∗ 

𝑗 𝑠 
( 𝑡 ))∇( 𝑊 𝑖 𝑓 𝑗 𝑓 

+ 𝑊 𝑖 𝑓 𝑗 𝑠 
) , (9)

ere, j denotes the neighborhood particle no matter whether it is fast
r slow particle, m j denotes the mass of particle j , 𝑘 𝐯 

𝑖 𝑓 
( 𝑡 ) is the stiffness

arameter of high-speed particle i f at time t , and 𝛼𝑖 𝑓 ( 𝑡 ) represents a fac-
or that solely depends on the current particle position. It may be noted
hat, 𝑊 𝑖 𝑓 𝑗 𝑠 

= 𝑊 ( 𝑥 𝑖 𝑓 𝑥 𝑗 𝑠 , ℎ ) is a smoothing kernel function with support-
ng radius h . What we wish to emphasize here is that, 𝑘 𝐯 

𝑗 𝑠 
( 𝑡 ) , 𝑣 ∗ 

𝑗 𝑠 
( 𝑡 ) and 𝑥 𝑗 𝑠 

re equal to the values calculated in the previous major step, because
e don’t recompute them in the first N mini 1 mini steps of every major

tep. 
Since during the first 𝑁 𝑚𝑖𝑛𝑖 − 1 steps, low-speed particles are waiting

or the high-speed particles, to make up the difference in these two-scale
ime steps. We propose a solution of having an adjustment on the time
tep for low-speed particles: 

𝑡 𝑖 = 

{ 

𝜖Δ𝑡 𝑚𝑖𝑛𝑖 if particle 𝑖 ∈ low-speed cluster 
Δ𝑡 𝑚𝑖𝑛𝑖 else 

, (10)

here 𝜖 is a user-defined parameter of time compensation of low-speed
articles in the last mini step of a major step. The parameter 𝜖 is usually
et to a number larger than 1 in our method. When it is set to 1, it will
e similar to the circumstance that high-speed particles move in each
ini time step, and low-speed particles also move for 1 mini step per
ajor step. The higher the value 𝜖 is, the more temporal details in the

imulation will be produced and it will spend more computational time.
nd 𝜖 should not be set to a number larger than a value the CFL condition

ndicates. In our implementation, we usually set the number to 1.5 to
nsure the equilibrium of detailed description and the efficiency when
 max ≤ 3 . The connection between value 𝜖 and time efficiency will be
iscussed in the following section. 

In the last mini step of a major step, we process the complete SPH
ime step procedure for all particles in the scene, but with a few revi-
ions. It is only when velocity and position are updated that slow parti-
le i s and fast particle i f are calculated separately due to the time step
ifference, so we update the velocity and position of particle i s at time
 + 𝜖Δ𝑡 𝑚𝑖𝑛𝑖 and i f at time 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 in Eq. (11) to Eq. (14) respectively,

 𝑖 𝑠 
( 𝑡 + 𝜖Δ𝑡 𝑚𝑖𝑛𝑖 ) = 𝑣 𝑖 𝑠 

( 𝑡 ) + 𝑎𝜖Δ𝑡 𝑚𝑖𝑛𝑖 , (11)

 𝑖 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) = 𝑣 𝑖 𝑓 

( 𝑡 ) + 𝑎 Δ𝑡 𝑚𝑖𝑛𝑖 , (12)

 𝑖 𝑠 
( 𝑡 + 𝜖Δ𝑡 𝑚𝑖𝑛𝑖 ) = 𝑥 𝑖 𝑠 

( 𝑡 ) + 𝜖Δ𝑡 𝑚𝑖𝑛𝑖 𝑣 𝑖 𝑠 ( 𝑡 + 𝜖Δ𝑡 𝑚𝑖𝑛𝑖 ) , (13)
 𝑖 𝑓 
( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) = 𝑥 𝑖 𝑓 

( 𝑡 ) + Δ𝑡 𝑚𝑖𝑛𝑖 𝑣 𝑖 𝑓 ( 𝑡 + Δ𝑡 𝑚𝑖𝑛𝑖 ) , (14)

ere, a denotes the acceleration of all particles, which is updated in this
ini step. In addition, 𝑣 𝑖 𝑠 ( 𝑡 ) denotes the velocity of low-speed particles
hich is equal to the value calculated in the previous major step, while
 𝑖 𝑓 
( 𝑡 ) denotes the velocity of high-speed particles in the previous mini

tep. 

. Experimental results and discussion 

In this paper, we integrate our method with both PCISPH and DFSPH
rameworks, and employ the cubic spline kernel in simulation and use
SPH variant [31] to compute viscosity terms for low viscosity fluids.
erformances are measured on an NVIDIA GTX 1070 graphic card with
GB VRAM and an 8-core 3.40 GHz Intel i7 with 24 GB RAM. The im-
ges are rendered with Blender. All time measurements don’t include
he rendering procedure. We fully implement the simulation procedure
f our methods on CUDA for efficiency. Also, please refer to our supple-
entary video for more vivid animations with details. 

.1. Particle partition 

Fig. 3 shows a scenario of high-speed fluids flushing to a fluid block
n the ground to demonstrate our dynamic particle partitioning pro-
edure. The speed of pink fluids is much higher than the fluid block
n the ground at the initial stage, so the partition result separates to
oth groups of fluids distinctly. After fluids interacting with each other,
ome high-speed fluids become slower and some low-speed fluids be-
ome faster. The cluster index which labels particles is dynamically ad-
usted as their velocities are changing with the simulation. Because of
he features of k -means clustering, some particles with an intermediate-
evel speed are clustered into the high-speed group as the 3 rd picture il-
ustrates, and later some of them are clustered into the low-speed group
ince their velocities are close to the critical value. 

Fig. 4 shows a verticle emitter under water, and Fig. 5 a horizontal
mitter. We set 𝜖 to 2 to ensure the balance of detailed description and
he efficiency. Both scenarios have exhibited good performance, and we
an hardly notice artifacts. 
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Table 1 

Performance of k -means clustering. 

Number of particles 350k 550k 1.2 m 3.0 m 

k -means clustering 29.1 ms 40.04 ms 64.4 ms 138.6 ms 

Time step update (per mini step) 8.48 ms 10.5 ms 29.1 ms 79.0 ms 

Fig. 4. The result of having a verticle emitter under water. 

Fig. 5. The result of having a horizontal emitter under water. 
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Table 2 

Performance comparison for fluids flushing scene. 

Method 

Pressure Solving Overall Simulation 

avg sum avg sum 

PCISPH 223.3 ms 1454 s 378.0 ms 2462 s 

PP-PCISPH 114.2 ms 918 s 237.9 ms 1480 s 

DFSPH 161.0 ms 1036 s 326.0 ms 2099 s 

PP-DFSPH 71.5 ms 535 s 205.7 ms 1288 s 

This scene contains 369,000 fluid particles in the fluid block 

with 100,000 high-speed particles to emit later and 448,000 

static boundary particles. 

Table 3 

Performance comparison for high-speed fluids flushing 

the dragon ( Fig. 7 ). 

Method 

Pressure solving Overall simulation 

avg sum avg sum 

PCISPH 80.3 ms 471 s 143.1 ms 840 s 

PP-PCISPH 62.7 ms 367 s 133.9 ms 783 s 

DFSPH 62.6 ms 330 s 130.6 ms 688 s 

PP-DFSPH 29.0 ms 153 s 100.1 ms 529 s 

In this scene, 208,000 fluid particles are involved, with 

158,000 particles for the dragon and 309,000 particles 

for the boundary. 
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Table 1 compares the efficiency of k -means clustering procedure in
ur method (PP-SPH) with the time step updating procedure of standard
PH methods. Note that, in this measurement, k -means clustering also
ncludes the time step computing procedure. Although clustering costs
ome time, we process the clustering procedure only once per N mini step.
t has obvious advantages when simulating high-speed fluids, since the
reater the speed difference is, the larger N mini will be, and the better
erformance we could have than the standard ones. 

.2. Performance 

We simulate the scenes with an adaptive time-step scheme, where the
ime step is derived from the CFL condition at the beginning of each ma-
or step. Unless specifically mentioned, in our experiments that contain
 -means clustering procedure to partition particles, we set the maximum
ini-steps number 𝑁 max in a major step to 3. And set the parameter 𝜖
sed to adjust time-steps for low-speed particles to 1.5. 
.2.1. High-speed fluids flushing fluid block 

We compare the performances like the scene of Fig. 3 but introduce
ore particles than Fig. 3 in experiments to both high-speed fluids and
uid block. We simulate the scene on PCISPH and DFSPH with or with-
ut our scheme to make a comparison. Table 2 shows the detailed perfor-
ance of the simulation. This scenario illustrates that with our methods,

oth PCISPH and DFSPH can have a better performance on simulation
fficiency. Fig. 6 compares the rendering results with or without our dy-
amic particle partitioning method, showing that although our PP-SPH
ethod ignores some calculations of low-speed particles, we can still

apture sufficient details. 

.2.2. High-speed fluids flushing the dragon 

Fig. 7 demonstrates the realistic rendering result of high-speed fluids
ushing the dragon model, thus producing a great number of splashes on
he dragon and on the ground. Table 3 shows the performance compar-
son between methods. We can see our method has better performance
han the standard SPH methods on pressure solving, but as the number
f fluid particles for the scene is at a low level and neighborhood search-
ng is another time-consuming procedure, thus the speed-up on overall
erformance is a little less than the one on pressure solving. 

Fig. 8 demonstrates the number of particles in two groups after pro-
essing the particle partitioning procedure. The scene begins with high-
peed particle emission, thus most of the particles partitioned into the
igh-speed group are those emitted particles. At the end of the emission,
ome of the fast particles become slower and closer to the velocity of
ormal particles, so the number of high-speed particles shows a trend of
ecreasing in the later frames. The result of k -means clustering shows a
imilar repeated pattern. When the variation of particle speeds becomes
maller, more particles are prone to the trend of being partitioned into
he group of higher velocity, and after the sudden increase on the num-
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Fig. 6. Comparison for high-speed fluids flushing fluid block with different methods. With our method, we can generate more splashes and preserve more details. 

Fig. 7. High-speed fluids flushing the dragon model. 

Fig. 8. The Result of particle partitioning procedure for High-speed Fluids 

Flushing the Dragon ( Fig. 7 ). 
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Fig. 9. Double dam break with obstacle. Top row: mesh model views; Bottom 

row: Particle partitioning view. 
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er of high-speed particles, a decreasing trend on the number is pre-
ented in the later simulation steps. In some cases, some particles will
hift between two groups, thus a fluctuation on the number of particles
n each group is presented in the chart. 

The result of Figs. 3 and 7 have proved that our methods have a better
erformance than the standard ones in the scene in which high-speed
uids are hitting the normal-speed fluids or the static boundary objects.
ut in fact, having high-speed fluids at the beginning of the simulation

s not a necessity. Our method will also have a better performance in the
cene in which particles can be distinctly partitioned into two groups. It
ndicates in most scenes where particles will have a large difference in
heir velocities fields after processing a number of simulation steps. The
article clustering procedure will work fine and our method will show
ts advantages over the standard methods. 
.3. Comparisons with different parameter settings 

We have two more parameters in our method than the standard SPH
ethods, the maximum mini-steps in a major step 𝑁 max and the time

tep adjustment parameter for low-speed particles 𝜖. The parameters can
e controlled by users to adjust the simulation results and the efficiency
f the simulation. In this section, we conduct a series of experiments
o compare the performance when choosing different parameters in the
imulation. We choose a scene of double dam breaks in Fig. 9 to compare
he performance between different parameter settings. 

Table 6 demonstrates the performance with different parameter set-
ings in double dam break scenes. In our method, choosing a larger value
or 𝑁 max will improve the efficiency of the simulation. In our simulation,
e usually choose a number ranging from 2 to 4 for 𝑁 max . The 𝜖 is served
s a supplement to the time step for low-speed particles. A larger 𝜖 will
ecrease the efficiency of the simulation as the computational cost will
ncrease with the time-step size. When 𝜖 is too large, it will also cause
he instability issue as it breaks the rule of the CFL condition. We also
otice, the increase of 𝜖 on PCISPH will have a larger decrease in the effi-
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Fig. 10. The result of particle partitioning procedure for rigid body-fluid interaction. 

Fig. 11. The result of particle partitioning procedure for soft body-fluid inter- 

action. 
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Fig. 12. The result of particle partitioning procedure for melt-able-fluid inter- 

action. 
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iency comparing to DFSPH because the computational cost of pressure
olving in PCISPH grows much faster than DFSPH as time-step increases.

.4. Applications for dynamic boundary 

Static obstacles interacting with fluid have been token as static
oundaries and achieved good performances. And for solid-fluid inter-
cting scenarios, since the dynamic solid contacts fluid only with a small
art of the entire fluid, which means relatively high velocities particles
re the minorities [12] . For this condition, our approach has more ob-
ious advantages than traditional methods that need to handle all the
articles. To prove that, we replace the static object with shape match-
ng constraint to realize a flexible fluid-solid interactions varying from
igid bodies to deformable objects [42] . 

Fig. 10 shows a rigid solid-fluid interacting in a flooding-street scene.
ig. 11 illustrates an interaction of fluids flushing a deformable model
nd Fig. 12 gives a melting phenomenon, in which a melt-able model
rops on board and falls into the water to granular melts. Also, Table.
 illustrates the performances of different SPH models combined with
hape matching constraints. From these three experiments we can see
hat only the fluid particles interacting with dynamic boundaries or on
he surfaces tend to be partitioned in high velocity set, so our approach
an make a big contribution to this situation and improve a lot of effi-
iencies. 

Furthermore, we have chosen three of all scenarios and computed ra-
ios of v max, all to v max, low in each frame of the three scenarios, as shown
n Fig. 13 . Fig. 13 (d) shows the comparison of ratios in these three differ-
nt scenarios. We can notice that the ratios are roughly between 2 and
0. As is illustrated by the polyline diagram, the ratios vary greatly in
very scenario, and different scenarios have completely different ratios.
t is difficult to find a threshold that suits all scenarios unless spending
 lot of time setting thresholds for every scene. 

.5. Large-scale scenarios 

We conduct some large-scale scenarios with our scheme to confirm
he efficiency and stability of our new method when simulating with a
arge number of particles. 

.5.1. Flooding street 

Fig. 15 illustrates a fluid block falling and flushing to the street, hit-
ing the vehicles and street lights. Fluids produce big waves when hitting
he vehicles and are divided into two flows when meeting the street
ights. Table 4 documents the performance of Figs. 15 and 14 shows
he partitioning result. We can notice an increase in the percentage of
igh-speed particles from Fig. 14 . This is because, in the beginning, par-
icles inside the fluid block are with low velocities, while most of the
articles near the surface have relatively higher velocities and they are
artitioned into the high-speed group. 
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Fig. 13. Comparison of ratios in three different scenarios. 

Table 4 

Performance comparison of flooding street ( Fig. 15 ). 

Method 

Num 

part. 

Pressure solving Overall simulation 

avg sum avg sum 

PCISPH 2720k 1119.54 ms 11,006 s 1499.8 ms 14,787 s 

PP-PCISPH 707.4 ms 6780 s 1032.2 ms 9892 s 

DFSPH 1202.6 ms 8812 s 1679.2 ms 12,305 s 

PP-DFSPH 303.7 ms 3018 s 755.7 ms 7511 s 

PCISPH 5330k 2580.9 ms 32,594 s 3871.4 ms 48,892 s 

PP-PCISPH 2566.2 ms 25,573 s 3675.2 ms 36,623 s 

DFSPH 2956.5 ms 27,433 s 4413.0 ms 40,948 s 

PP-DFSPH 841.2 ms 8947 s 2139.7 ms 22,757 s 

6
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o  

Fig. 14. The result of particle partitioning procedure for flooding street 

( Fig. 15 ). 

t  

c

.5.2. Flooding city 

Fig. 1 illustrates fluid flooding the city and generating splashes when
itting the buildings and flowing through the roads between buildings.
able 5 documents the performance of Fig. 1 . 

Both Figs. 15 and 1 have proved that our method is capable of sim-
lating large-scale scenarios with stability and efficiency. We believe,
ur method should be able to simulate some larger scenarios, yet due
o the limitation on the graphics memory at our lab, we are not able to
onduct such simulations currently. 
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Fig. 15. A fluid block flooding the street. The rendering results are displayed as fluid surfaces and clustered particles. 

Table 5 

Performance comparison for flooding city ( Fig. 1 ). 

Method 

Num 

part. 

Pressure solving Overall simulation 

avg sum avg sum 

PCISPH 7240k 989.4 ms 10,833 s 1699 ms 18,604 s 

PP-PCISPH 572.2 ms 6220 s 1195.5 ms 12,995 s 

DFSPH 783.7 ms 8519 s 1539.6 ms 16,735 s 

PP-DFSPH 378.8 ms 4069 s 1129.2 ms 12,127 s 
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. Conclusion 

In this paper, we have detailed a novel SPH framework to boost the
fficiency and robustness of fluid simulation. In contrast to the previ-
us SPH methods using a static or adaptive yet unified time step for
Table 6 

Performance comparison for double dam break ( Fig. 9 ). 

𝑁 max 𝜖

PCISPH 

pressure overall 

avg sum avg sum 

2 1 65.6 ms 159.3 s 112.9 ms 274.2 s

1.3 111.2 ms 256.9 s 160.4 ms 370.6 s

1.5 128.2 ms 302.0 s 177.9 ms 419.2 s

3 1 55.9 ms 123.7 s 95.8 ms 211.9 s

1.3 76.0 ms 185.3 s 118.9 ms 289.9 s

1.5 103.2 ms 236.6 s 145.6 ms 333.7 s

2 137.8 ms 307.0 s 176.4 ms 393.1 s

4 1 47.3 ms 115.4 s 84.9 ms 207.2 s

1.5 81.5 ms 194.0 s 120.2 ms 285.9 s

2 102.9 ms 245.8 s 139.3 ms 332.9 s

2.5 137.8 ms 339.1 s 170.3 ms 419.2 s

Standard 107.0 ms 317.2 s 138.8 ms 411.7 s
ll fluid particles in the simulation, we introduced a two-scale time-step
cheme for SPH, which partitions particles into two groups, and enforces
ifferent schedules and different time-step sizes for particles of different
roups. Simulating particles with different strategies in fluid simulations
as resulted in an improvement on computational efficiency, and can
uarantee the numerical stability while still producing realistic details. 

Combining the experiments in the previous chapters, we compared
everal popular traditional SPH methods and their derivatives with the
PSPH method proposed in this paper according to the characteristics
f several most important aspects of the SPH method. As Table 8 shows,
he non-filled star means a half-filled star. The more stars, the better
he effect. It can be seen that our method has apparent advantages
ver existing SPH methods when simulating large-scale phenomena with
igh-speed particles in the scenes. Our method has apparent advantages
ver existing SPH methods when simulating large-scale phenomena with
igh-speed particles in the scenes. 
DFSPH 

pressure overall 

avg sum avg sum 

 29.1 ms 73.2 s 78.6 ms 197.3 s 

 29.3 ms 76.0 s 77.1 ms 196.1 s 

 30.7 ms 79.0 s 79.3 ms 204.2 s 

 24.7 ms 61.7 s 68.8 ms 171.8 s 

 26.6 ms 67.4 s 71.2 ms 180.2 s 

 26.4 ms 67.4 s 71.3 ms 181.9 s 

 30.2 ms 78.6 s 74.9 ms 195.0 s 

 28.4 ms 73.5 s 70.7 ms 183.3 s 

 29.7 ms 78.5 s 71.0 ms 187.7 s 

 32.7 ms 83.7 s 75.3 ms 192.8 s 

 36.0 ms 98.6 s 78.1 ms 214.3 s 

 48.1 ms 123.7 s 90.3 ms 232.4 s 
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Table 7 

Performance for hhape matching-PPSPH combination experiments. 

Scene Method NumPart 

Pressure solving Overall simulation 

avg sum avg sum 

Fig. 

10 

PCISPH 513k 779.6 ms 2058 s 910 ms 2402 s 

PP-PCISPH 481.8 ms 1504 s 612.6 ms 1912 s 

DFSPH 525.4 ms 1523 s 639 ms 1853 s 

PP-DFSPH 227.1 ms 704 s 476.9 ms 1478 s 

Scene Method NumPart Pressure solving Overall simulation 

avg sum avg sum 

Fig. 

11 

PCISPH 452k 62.0 ms 386 s 104.3 ms 644 s 

PP-PCISPH 40.9 ms 205 s 83.2 ms 417 s 

DFSPH 67.2 ms 329 s 131.0 ms 642 s 

PP-DFSPH 34.7 ms 177 s 81.5 ms 416 s 

Scene Method NumPart Pressure solving Overall simulation 

avg sum avg sum 

Fig. 

12 

PCISPH 265k 255.3 ms 299 s 284.2 ms 333 s 

PP-PCISPH 203.7 ms 229 s 232.1 ms 260 s 

DFSPH 216.4 ms 237 s 238.0 ms 308 s 

PP-DFSPH 157.5 ms 204 s 193.7 ms 251 s 

Table 8 

Qualitative evaluation and comparison among existing methods. 

Method Stability Incompressibility Time step size Efficiency 

Standard SPH [25] ★ ★ ★ ★
WCSPH [3] ★✩ ★✩ ✩ ★
PCISPH [32] ★★ ★★ ★★ ★★
IISPH [17] ★★★ ★★★ ★★★ ★★★
DFSPH [4] ★★★ ★★★ ★★★★ ★★★★
PP-PCISPH ★★ ★★ ★★✩ ★★★
PP-DFSPH ★★★ ★★★ ★★★★✩ ★★★★★
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.1. Limitation 

k -means clustering is the particle partitioning algorithm we had used
n the current method, but the result of k -means clustering is prone to
ertain configurations that might be affected by the initial clustering
nput. We noticed that some particles with intermediate speeds will be
apidly shifting between high-speed and low-speed clusters. Although it
on’t affect the stability of our simulation, it might slightly reduce the

fficiency of our simulation because more particles are partitioned into
he high-speed group, thus more computations need to be handled. 

.2. Future works 

So far, we have proved the efficiency and stability of our methods
ith simulations including fluids and dynamic boundary objects. Cur-

ently, we partition particles into two groups in our method, but it is
ore natural to think that it may be better to partition particles more

ccurately. For example, partitioning fluid particles into more groups,
r implementing an adaptive group number for particle partitioning. It
ight bring more benefits if particles could be partitioned more exactly,

s details of the simulation result are more likely to be preserved, and
t would help improve the efficiency. It will be one of our goals in the
uture. We implement the k -means clustering algorithm in particle parti-
ioning for its quick convergence and easy implementation in this paper,
ut there may be some other better clustering methods or variance for
ur method to resolve problems like particle shifting we have mentioned
efore. To retain a better and efficient simulation result, the setting of
wo parameters in our method needs to be determined manually. The
hoice is more based on our experiences rather than physical theories,
nd how to automatically find proper parameters is another topic that
e wish to focus on next. Meanwhile, we will continue to expand our
ethods to facilitate more complex applications in the future. 
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